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Abstract
Holographic Hydrodynamics and Its Applications in Weyl Semimetal

Chiral anomaly is one of the defining properties of Weyl and Dirac fermions.In
the introduction chapter, the interest and the reason for studying Weyl and Dirac
semimetals in terms of chiral anomaly will be presented along with the reason why
and how we use hydrodynamics. In the preliminary chapter, the basics of hydrody-
namics, fluid/gravity duality, chiral anomaly will be covered. In the Weyl semimetal
chapter, different aspects of Weyl semimetals and also the derivation of chiral anomaly
in terms of hydrodynamics will be explored. In the conclusion chapter, review and
current challenges in the field of transport phenomenon are presented.
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Chapter 1

Introduction

Chiral anomaly is defined as the quantum term that violates the classical conser-
vation of the chiral current. It was originally observed in neutral pion decay and
was initially understood by Adler, Bell, Jackiw in 1969 [13]. Although originating
from high energy physics, chiral anomaly continue to hold in some nonrelativistic
condensed matter systems[17, 26].

In recent years, topological semimetals have become a major new theme in the
field of condensed matter physics. And Weyl semimetal, as the name suggests, is a
type of topological semimetal composed of Weyl fermions. It has numerous interest-
ing properties such as its low energy effective band structure has Dirac dispersion,
its energy band is topologically protected and it also exhibits discontinuous non-
trivial Fermi arc. But most of the above properties are similar to the properties of
high temperature superconductor, graphene, topological insulators and quantum
hall effect[3, 7, 23, 24]. Out of all the predicted properties of topological semimet-
als, chiral anomaly still remains interesting due to recent observation in real con-
densed matter system[17]. Theoretically, there are multiple ways of deriving chiral
anomaly[8, 13].

In this thesis, hydrodynamics description of chiral anomaly effects is introduced.
Although being one of the oldest,most studied and perhaps hardest branch of clas-
sical physics, hydrodynamics has been able to produce fruitful results even in mod-
ern physics. In 1941, Landau constructed a quantum theory of superfluid helium
[15] which was perhaps the earliest modern application of hydrodynamics. Later
on, quantum effects were discovered in hydrodynamics and due to the seminal
work[18] by Policastro, Son, Starinets, and Son, the two seemingly unrelated field,
string theory and condensed matter start to be connected. In 2002, they showed
that according to holography the viscosity/entropy density ratio of the fluid formed
from theN = 4 supersymmetric Yang-Mills theory in 3 + 1 dimensions equals η/s =
(1/(4π))h̄/kB. And experimental progress made at the same time also showed that
quark-gluon plasma as produced in the heavy-ion collisions at the Relativistic Heavy
Ion Collider in Brookhaven showed a much less viscous behaviour than expected
from perturbative computation. Instead, the plasma seems to behave like ideal fluid.
And in 2003/2004 it was also discovered at Relativistic Heavy Ion Collider that the
quark-gluon plasma also has a very small η/s value which is very close to the holo-
graphic prediction[22, 14]. The mathematical tool, AdS/CFT correspondence is then
used in the field of condensed matter physics to study transport phenomenon in
2007[10]. And later on the derivation of effects of chiral anomaly with connection to
fluid/gravity correspondence is given by Son and Surowka in 2009[20].
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Chapter 2

Preliminary

2.1 Hydrodynamics

We begin with the most general form of the Navier-Stokes equations of motion of a
viscous fluid[16]:

ρ(
∂vi

∂t
+ vk

∂vi

∂xk
) = − ∂p

∂xi
+

∂

∂xk
η(

∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik

∂vl

∂xl
) +

∂

∂xi
(ζ

∂vl

∂xl
) (2.1)

where η is the function of pressure and ζ is the function of temperature. We can
also write the above equation in vector form, by making the assumption that the
viscosity coefficients η and ζ do not change noticeably throughout the fluid, we have
the famous Navier-Stokes equation:

ρ[
∂v
∂t

+ (v · ∇)v] = −∇p + η∆v + (ζ +
1
3

η)∇(∇ · v) (2.2)

The reason for introducing Navier-Stokes at the beginning is that any macro-
scopic system that possesses translational and rotational symmetry with long range
interaction at a finite temperature can be modeled in terms of the Navier-Stokes
equation. In classical regime, it would seem to be a better idea to use Boltzmann’s
kinetic equation as a powerful computational tool as long as we are dealing with the
collisions of nearly free particles. But as we go into the strongly interacting quantum
critical state regime, hydrodynamic equations can still be effective since the conser-
vation laws still holds.

Let us start from the energy-momentum tensor of the simplest ideal fluid which
has the form

Tik =


e 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (2.3)

It can also be written in terms of the fluid 4-velocity ui as

T ik = wuiuk − pgik (2.4)

The energy-momentum itself contains multiple conservation laws of the physical
system and the current can be expressed with respect to the 4-velocity ui as

ji = nui (2.5)
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But in reality, for systems with dissipation, we need to add the extra viscosity and
thermal conduction term into the energy-momentum tensor and flux density vector:

Tik = −pgik + wuiuk + τik (2.6)

ji = nui + vi (2.7)

The equations of motion are still contained in the continuity equation and momen-
tum and energy conservation equation.

In order to simplify our problem, we recall some of the most important laws and
relations in physics:

∂µSµ ≥ 0 (2.8)

which is the second law of thermodynamics and

d(w− Tσ)/n = (1/n)dp− (σ/n)dT (2.9)

which is the thermodynamic relation between the relativistic chemical potential. The
chemical potential is defined as µ = (w− Tσ)/n, and w is the enthalpy, i.e. the heat
function per unit mass of fluid.

Besides, we also need Landau frame to reduce the complexity brought by the
dissipation term:

τikuk = 0 (2.10)

viui = 0 (2.11)

Now recall the thermal relation derived earlier, and expand the energy-momentum
tensor, we have the new form of the energy-momentum tensor of relativistic Navier-
Stokes theory as:

Tµν =Tµν

(0) + Tµν

(1)P
µν = gµν + uµuνTµν

(1)

=− PµκPνλ

[
η

(
∂κuλ + ∂λuκ −

2
d

gkλ∂αuα

)
+ ζgkλ∂αuα

] (2.12)

Similarly, for the current, our new constitutive relation takes the form:

Jµ = nuµ − σTPµν∂ν(µ/T) (2.13)

2.2 Fluid/Gravity Duality

The above relativistic hydrodynamic equations can also be obtained through the
calculation in AdS/CFT. The reason is that the Navier-Stokes equation describes the
long-range and long-time collective evolution at finite temperature, and the dynami-
cal gravity of the black hole in the bulk described by Einstein gravity can be the "gen-
erating functional". This is initially done by Hubeny, Minwalla and Rangamani[12].
By considering the "boosted black branes" which admit AdS5 solution:

ds2 = −2uµdxµdr− r2 f (br)uµuνdxµdxν + r2Pµνdxµdxν (2.14)

And by considering coordinate transformation to Eddington-Finkelstein coordinates,
which is necessary to ensure no singularities at the horizon, we have:

ds2 = −2uµdxµdr− r2 f (r/T)uµuνdxµdxν + r2 (uµuv + ηµν

)
dxµdxν (2.15)
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where natural units are used and AdS radius L is set to be 1. As we change the hori-
zon location as a function of the coordinates xµ, we also recognize that the necessity
of changing other components uµ(x) to ensure the equation remains to be a solution
to Einstein’s equations. We then have:

ds2 =− 2uµ(x)dxµdr− r2 f
(

r
T(x)

)
uµ(x)uv(x)dxµdxν

+ r2 (uµ(x)uν(x) + ηµν

)
dxµdxν

(2.16)

In order to solve the above metric, we fix the metric:

grr = 0 (2.17)

grµ = −uµ (2.18)

This give us the constraint equations, which can be simplified in terms of the Landau
frame mentioned above. The technique to obtain the energy-momentum tensor will
be very straightforward, we apply perturbation expansion relative to the stationary
solution and obtain:

gµν =
∞

∑
n=0

εng(n)µν (T(εx), u(εx))

uµ =
∞

∑
n=0

εnuµ(n)(εx)

T =
∞

∑
n=0

εnT(n)(εx)

(2.19)

ds2 =ds2
0 + ds2

1 + · · ·
ds2

0 =− 2uµdxµdr− r2 f̃ (βr)uµuvdxµdxν

+ r2 (uµuv + ηµν

)
dxµdxν

ds2
1 =2r2βF(βr)σµνdxµdxν +

2
d

ruµuv∂αuαdxµdxν

− ruα∂α

(
uµuν

)
dxµdxν

(2.20)

Before finally obtaining the Navier-Stokes equation, we recall the Gubser-Klebanov-
Polyakov-Witten formula:

ZQFT [φ0] = ZQuantumGravity [φ→ φ0] (2.21)

which allows us to calculate the expectation value of boundary stress-energy tensor
with respect to the boundary metric µν[2, 9]:

〈
Tµν

〉
=

2√
−h

δSgrav

δhµν

= lim
r→∞

−rd+1

κ2

[
Kµν − Khµν + dhµν −

1
d− 1

(
hRµν −

1
2

h
Rhµν

)] (2.22)

By combining the two equation together, we obtain the precise form of relativistic
Navier-Stokes equations.
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2.3 Chiral Anomaly

Chiral anomaly comes from the fact that, for a massless Dirac Lagrangian which
takes the form:

L = iψγµ∂µψ (2.23)

there exists a chiral symmetry in classical field theory. But after quantization, this
chiral symmetry will be spontaneously broken, the continuity equation and conser-
vation for axial vector current will no longer be 0. Instead, we have:

∂µTµν = Fνλ jλ (2.24)

∂µ jµ = CEµBµ ==
e2

2π2h̄2 E · B (2.25)

where the jµ
5 is the 4-D axial vector current defined as jµ5 = ψγµγ5ψ. It is very un-

intuitive to understand chiral anomaly at the beginning since there chiral anomaly
is purely a quantum mechanical phenomenon with no corresponding classical phe-
nomenon. Here, I will follow a series of Fujikawa’s paper[5, 6, 4] to derive the above
equation. First, we start from an action for Weyl semimetal:

Sw =
∫

d4xψ
(
iγµ

(
∂µ + iAµ

)
−m− bµγµγ5)ψ (2.26)

where ψ = ψ†γ0. This action can written in a partition function as:

Z =
∫
DψDψeiSW (2.27)

Now perform a local chiral transformation on ψ and psi:

ψ→ e−
iθ(x)γ5

2 ψ (2.28)

ψ→ ψe−
iθ(x)γ5

2 (2.29)

The partition function Z gives information about phase term and measure term,
which also change when we perform the chiral transformation above. We see that
the local chiral transformation kills axial vector term and at the end we obtain a
massless Dirac action and also the expression for θ(x):

SD =
∫

d4xψiγµ
(
∂µ + iAµ

)
ψ (2.30)

θ(x) = 2bµxµ = 2 (b · r− b0t) (2.31)

We would like to know how quantization will influence j∗µ5 , from a path integral
perspective, we consider the transformation of the measure term:

Dψ′Dψ
′ → DψDψ det

[
eiθ(x)γ5

]
≡ DψDψei∆Sθ (2.32)

We find that:
Z′ =

∫
DψDψei(SD+∆Sθ) (2.33)
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where δSθ and SD are defined as

∆Sθ = Tr
[
θ(x)γ5] , SD =

∫
d4xψiγµ

(
∂µ + iAµ

)
ψ =

∫
d4xψiγµDµψ (2.34)

Note that {SD, ∆Sθ} = 0, which forbids the diagonalization of both terms simulta-
neously. Now let us assume the the eigenvalue and eigenstate to be ε and φ, we
have:

γµDµφn(x) = εnφn(x) (2.35)

which satisfies the requirement orthogonality. We plug in this back to the expression
for the action ∆Sθ :

∆Sθ =
∫

d4xθ(x)∑
n

φ∗n(x)γ5φn(x) (2.36)

Define the above summation term as:

A(x) = ∑
n

φ∗n(x)γ5φn(x) (2.37)

The summation here is complicated since it involves the situation of infinity minus
infinity. We use the anti-commutative relation of Dirac gamma matrices

{
γ5, γµ

}
=

0, we obtain the new form of (2.31):

γµDµγ5φn(x) = −εnγ5φn(x) (2.38)

Since eigenstates are orthogonal, only the zero mode eigenstates contribute. We are
allowed to find a new set of bases and expand A(§):∫

d4xA(x) =
∫

d4xφ∗0(x)γ5φ0(x)
=
∫

d4x ∑ φ∗0,±(x)(±1)φ0,±(x)
= n+ − n− = v

(2.39)

where
γ5φ0,±(x) = ±φ0,±(x), n± =

∫
d4xφ∗0,±(x)φ0,±(x) (2.40)

The v denotes the difference of number of left-handed zero mode and right-handed
zero mode. It also has a name in math, Pontryagin index of Dirac operator. Now, we
use regularization to calculate the summation A(x):

A(x) = lim
M→∞

∑
n

φ∗n(x)γ5e−
ε2
n

M2 φn(x)

= lim
M→∞

∑
π

φ∗n(x)γ5e−
(γµ Dµ)

2

M2 φn(x)

= lim
M→∞

Tr
∫ a4k

(2π)4 e−ikxγ5e−
(γµ Dµ)

2

M2 eikx

(2.41)
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We put a factor of e−ε2
n/M2

into the above integral to ensure the convergence of the
summation. We use the anti-commutation relation of Dirac gamma matrices to ex-
pand the factor and obtain the final form of A(x)

A(x) = = lim
M→∞

Tr
∫ a4k

(2π)4 e−ikxγ5e−
DµDµ

ie
4 [γµ ,γν ]Fµν

M2 eikx

==
e2

32π2 εµvρλFµvFρλ

(2.42)

Plug in the expression of A(x) back into ∆Sθ and we find:

∆Sθ =
∫

d4xθ(x)A(x) =
e2

32π2

∫
d4xθ(x)εµνpλFµvFpλ (2.43)

Now we are interested in how the chiral anomaly action influence on the current,
we calculate the original action after infinitesimal chiral transformation and obtain:

S′ =
∫

d4x
{

ψiγµDµψ− θ(x)/2
(

∂µ jµ
5 +

e2

16π2 εkvρλFµvFρλ

)}
(2.44)

Set the above equation to be 0 and we obtain the chiral anomaly current equation:

∂
µ
µj = −

e2

16π2 εµvρλFµvFρλ (2.45)

Now since we are interested in the application of chiral anomaly in condensed mat-
ter physics, specifically transport phenomenon, we do the following simplification:

F̃µν =
1
2

εµνρλFρλ (2.46)

Fµv =


0 E1 E2 E3
−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

 (2.47)

Fµν
=


0 −B1 −B2 −B3
B1 0 E3 −E2
B2 −E3 0 E1
B3 E2 −E1 0

 (2.48)

εµνρλFµνFρλ = −bE · B (2.49)

Now simply plug in the above equation back to our original expression of the axial
current and we find

∂µ jµ
S =

e2

2π2 E · B (2.50)
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Chapter 3

Weyl Semimetal

3.1 Properties of Weyl Semimetal

The field of Weyl semimetal emerges from the study of the topology of crystalline
materials. The theoretical discovery and experimental realization of both Weyl and
Dirac semimetals have made this field one of the most important branch of con-
densed matter physics.

Let us start with the Dirac equation:(
iγµ∂µ −m

)
ψ = 0 (3.1)

with γ being the Dirac gamma matrices. Weyl realized that the Dirac equation can
be simplified using the gamma matrices in odd spatial dimensions. For example, in
1+1D dimension, the massless Dirac equation can be written in terms of the eigen-
states Ψ± as :

i∂tψ± = ±pψ± (3.2)

which is the 1D Weyl equation. The dispersion relation of this equation is:

E±(p) = ±p (3.3)

which tells us the chirality of the fermions. Now we extend our analysis to 3D, by
denoting

γ0 = I ⊗ τx (3.4)

γi = σi ⊗ iτy (3.5)

γ5 = −I ⊗ τz (3.6)

Now we have the massless Dirac equation in 3D

i∂tψ± = H±ψ±

H± = ∓~p ·~σ
(3.7)

The momentum separated pairs given in the above equation are the Weyl semimet-
als.

Now let us discuss some topological aspects of Weyl semimetals. We know that
if a system has time reversal symmetry, we will have the following property of Berry
curvature:

Ωp = Ω−p (3.8)

Also, when we have inversion symmetry, we will have the following property of
Berry curvature:

Ωp = −Ω−p (3.9)
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So that means, when we have both the time reversal symmetry T and the inversion
symmetry P , we have the following relation:

Ωp = 0 (3.10)

In Weyl semimetal, doubly degenerate bands arise when both the PT symmetry are
satisfied. So under the operation

T̃ = PT (3.11)

crystal momenta are invariant and thus we have the double degeneracy.
The geometric phase, also known as Berry phase, is a phase difference obtained

in the cycle of an adiabatic evolution of Hamiltonian. And Berry connection can be
viewed as a local gauge potential associated with the Berry phase. The Berry phase
of the Bloch wave functions within a single band n is captured by the line integral of
the Berry connection[1]:

An(k) = −i 〈un(k) |∇k| un(k)〉 (3.12)

which is equivalently the surface integral of the Berry flux,

F ab
n (k) = ∂kaAb

n − ∂kbA
a
n (3.13)

Also, in band theory, we have the net berry flux quantized to integers values since:∫ d2k
2π
Fn(k) = Nn (3.14)

Let us recall the Boltzmann kinetic equation:

d f (t, r, p)
dt

≡ ∂ f
∂t

+ r
∂ f
∂r

+ p
∂ f
∂p

= Ic{ f } (3.15)

The corresponding semi-classical equation of motion now takes the form[25]:

ṙ =
∂εp

∂p
+ ṗ×Ωp′

ṗ = eE + eṙ× B
(3.16)

The reason for introducing Berry phase here is that with the Berry field, unlike physi-
cal magnetic field, we can have magnetic monopoles, which precisely corresponds to
the Weyl points in the band structure. Note that one can also obtain chiral anomaly
using the Boltzmann kinetic equation, Berry phase and chiral magnetic effect[21].
Through this derivation, one can find that even though in a strongly interacting
system, the axial anomalies still exist since they are tying to Fermi surface proper-
ties. Besides, in the kinetic equation, we can study anomalies beyond relativistic
invariance. And now, I will review chiral anomaly in hydrodynamic regime in the
following section.

3.2 Hydrodynamics with Chiral Anomaly

Now as we are equipped with the preliminary and basic properties of Weyl semimetal,
we study the chiral anomaly phenomenon in hydrodynamic regime. Let us begin
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with the current associated with vorticity[20]:

Jµ = nuµ − σT (gµν + uµuν) ∂ν(µ/T) + σEµ + ξωµ + ξBBµ (3.17)

with σ being the conductivity, ξ being the new kinetic coefficient, and ωµ being the
vorticity term defined as

ωµ =
1
2

εµνλρuν∂λuρ (3.18)

In the previous section, we already know the basic form of chiral anomaly. Now we
write the chiral anomaly in the following way:

∂µ jµ = −1
8

CεµναβFµνFαβ (3.19)

with C being the anomaly coefficient. We notice that in condensed matter physics
scheme, the chiral anomaly is caused by the spectral flow when the gauge vacuum
tunnels between different topological configurations. We follow a top-down con-
struction approach in the derivation and we can add a Chern-Simons term in the
AdS5 so that we will obtain the chiral anomaly from the gravity side.

Now, let us start calculate the parity-odd kinetic coefficient ξ by writing out its
equation of state:

ξ = C
(

µ2 − 2
3

µ3n
ε + P

)
(3.20)

where ε and P are the energy density and pressure. We can modified the above
equation in the case of multiple U(1) conserved currents:

ξa = Cabcµbµc − 2
3

naCbcd µbµcµd

ε + P
(3.21)

Now, we follow quite straightforwardly from the preliminary section 2.1, we use
hydrodynamic equations, thermodynamics identity and Landau frame to calculate:

∂µ

(
suµ − µ

T νµ
)
= − 1

T ∂µuντµν − νµ
(

∂µ
µ
T −

Eµ

T

)
−C µ

T E · B (3.22)

When C is nonzero, we have anomaly and thus We make the following modification
to the U(1) and entropy currents

νµ = −σTPµν∂ν

( µ
T

)
+ σEµ + ξωµ + ξBBµ

sµ = suµ − µ
T νµ + Dωµ + DBBµ (3.23)

Follow directly from hydrodynamics, we calculate the hydrodynamic equations:

∂µωµ = − 2
ε + P

ωµ
(
∂µP− nEµ

)
∂µBµ = −2ω · E +

1
ε + P

(−B · ∂P + nE · B)
(3.24)

Solve the above equations and we will obtain the expression for ξ and ξB

ξ = C
(

µ2 − 2
3

nµ3

ε + P

)
, ξB = C

(
µ− 1

2
nµ2

ε + P

)
(3.25)
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The result here can also be computed using Kubo formula in the calculation of trans-
port coefficients.
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Chapter 4

Conclusion

In this thesis, I reviewed the basics of hydrodynamics, fluid/gravity duality, proper-
ties of Weyl semimetals, the derivation of chiral anomaly and hydrodynamic mod-
ification due to chiral anomaly. The basic theory of Weyl semimetal has been well-
established, although there are still some properties that have not been quite under-
stood such as weak anti-localization, negative magnetoresistance and non-saturating
magnetoresistance[19, 11]. Weyl semimetal can be seen as an extension of 3D graphene
and one of the most fascinating properties of it is the chiral anomaly. The several
derivations of chiral anomaly in the context of condensed matter physics have pro-
vided great insights not only into the transport phenomenon of Weyl semimetal but
also transport phenomenon of other materials and matter. Besides, the mathematical
tool brought by AdS/CFT, holographic hydrodynamics has been proven to be very
useful in the study of transport phenomenon.
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